Book Reconfigurable Antenna Design for THz B and 6G Applications 1st Dr. S. Mohankumar, Mrs. Shilpa Bhairanatti Dr. S. Mohankumar, Mrs. Shilpa Bhairanatti 978-93-91303-41-9 https://doi.org/10.47715/JPC.978-93-91303-41-9 Jupiter Publications Consortium Prof. S. MageshChennai, India 23042022 ... ... ...

Text Book of Practical Physics

 

Name of the Book: Reconfigurable Antenna Design for THz B and 6G Applications

 

Author(s) : Dr. S. Mohankumar, Mrs. Shilpa Bhairanatti

 

Abstract

Keywords: Reconfigurable Antenna Design,THz B, 6G Applications

 

Bibliography


Chapter 1
1. A. G. Kandoian, “Three New Antenna Types and Their Applications,” Proc. IRE, Vol. 34, pp. 70–75, February 1946.
2. Balanis, C.A., 2015. Antenna theory: analysis and design. John wiley & sons.
3. Faruque, M.I., Islam, M.T. and Misran, N., 2010. SAR analysis in human head tissues for different types of antennas. World Applied Sciences Journal, 11(9), pp.1089-1096.
4. H. Yagi, “Beam Transmission of Ultra Short Waves,” Proc. IRE, Vol. 26, pp. 715–741, June 1928. Also Proc. IEEE, Vol. 72, No. 5, pp. 634–645, May 1984; Proc. IEEE, Vol. 85, No. 11, pp. 1864–1874, November 1997.
5. Jensen, M. A. and Wallace, J.W., 2004. A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and propagation, 52(11), pp.2810-2824.
6. Lai, A., Leong, K.M. and Itoh, T., 2007. Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE transactions on antennas and propagation, 55(3), pp.868-876.
7. S. Uda, “Wireless Beam of Short Electric Waves,” J. IEE (Japan), pp. 273–282, March 1926, and pp. 1209–1219, November 1927.
8. Saunders, Simon R., and Alejandro Aragón-Zavala. Antennas and propagation for wireless communication systems. John Wiley & Sons, 2007.
Chapter 2
1. F. Maffett, Topics for a Statistical Description of Radar Cross Section, John Wiley & Sons, Hoboken, NJ, 1989.
2. F. Stevenson, Relations between the transmitting and receiving properties of antennas, Q.
3. K. Bhattacharya and D. L. Sengupta, Radar Cross Section Analysis and Control , Artech House, Norwood, MA, 1991.
4. Z. Elsherbeni and C. D. Taylor, Jr., Interactive antenna pattern visualization, in Software Book in Electromagnetics, Vol. II, CAEME Center for Multimedia Education, University of Utah, 1995, Chap. 8, pp. 367–410.
5. Z. Elsherbeni and P. H. Ginn, Interactive analysis of antenna arrays, in Software Book in Electromagnetics, Vol. II, CAEME Center for Multimedia Education, University of Utah,1995, Chap. 6, pp. 337–366.
6. Appl. Math., pp. 369–384, January 1948.
7. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, Hoboken, NJ,1989.
8. A. Balanis, Antenna theory: a review, Proc. IEEE, Vol. 80, No. 1, pp. 7–23, January 1992.
9. A. Balanis, Antenna Theory: Analysis and Design (3rd eds.), John Wiley & Sons, Hoboken,NJ, 2005.
10. C.-T. Tai and C. S. Pereira, An approximate formula for calculating the directivity of an antenna, IEEE Trans. Antennas Propag., Vol. 24, No. 2, pp. 235–236, March 1976.
11. L. Moffatt, Determination of Antenna Scattering Properties From Model Measurements, Report No. 1223-12, Antenna Laboratory, Ohio State University, January 1964.
12. D. M. Pozar, Directivity of omnidirectional antennas, IEEE Antennas Propag. Mag., Vol. 35,No. 5, pp. 50–51, October 1993.
13. F. Bolinder, Geometrical analysis of partially polarized electromagnetic waves, IEEE Trans.Antennas Propag., Vol. 15, No. 1, pp. 37–40, January 1967.
14. E. F. Knott, M. T. Turley, and J. F. Shaeffer, Radar Cross Section, Artech House, Norwood, MA, 1985.
15. A. Deschamps and P. E. Mast, Poincar´e sphere representation of partially polarized fields,IEEE Trans. Antennas Propag., Vol. 21, No. 4, pp. 474–478, July 1973.
16. A. Deschamps, Part II—Geometrical representation of the polarization of a plane electromagnetic wave, Proc. IRE, Vol. 39, pp. 540–544, May 1951.
17. Poincar´e, Theorie Mathematique de la Limiere, Georges Carre, Paris, 1892.
18. A. Adam, How to design an invisible’ aircraft, IEEE Spectrum, pp. 26–31, April 1988.
19. D. Kraus and R. J. Marhefka, Antennas, McGraw-Hill, New York, 2002.
20. J. D. Kraus, Radio Astronomy, McGraw-Hill, New york 1966.
21. J. J. Bowman, T. B. A. Senior, and P. L. Uslenghi (Eds.), Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland., Amsterdam, The Netherland: 1969.
22. J. Romeu and R. Pujol, Array, in Software Book in Electromagnetics, Vol. II, CAEME Center for Multimedia Education, University of Utah, 1995, Chap. 12, pp. 467–481.
23. J. S. Hollis, T. J. Lyon, and L. Clayton, Jr. (Eds.), Microwave Antenna Measurements, Scientific-Atlanta, Inc., July 1970.
24. J. Sevick, Experimental and Theoretical Results on the Backscattering Cross Section of Coupled Antennas, Tech. Report No. 150, Cruft Laboratory, Harvard University, May 1952.
25. J. T. Aberle, Analysis of Probe-Fed Circular Microstrip Antennas, Ph.D. Dissertation, University of Massachusetts, Amherst, 1989.
26. J. T. Aberle, D. M. Pozar, and C. R. Birtcher, Evalution of input impedance and radar cross section of probe-fed microstrip patch elements using an accurate feed model, IEEE Trans.Antennas Propagat., 39, no. 12, pp. 1691–1696, December 1991
27. J. W. Crispin, Jr. and K. M. Siegel, Methods of Radar Cross Section Analysis, Academic Press, New York, 1968.
28. I. Skolnik (Ed.), Radar Handbook, McGraw-Hill, New York, 1970, Chap. 27, Sec. 6,pp. 27-19–27-40.
29. I. Skolnik, Radar Systems, Chapter 2, McGraw-Hill, New York, 1962.
30. A. McDonald, Approximate relationship between directivity and beamwidth for broadside collinear arrays, IEEE Trans. Antennas Propag., Vol. 26, No. 2, pp. 340–341, March 1978.
31. R. B. Green, Scattering from conjugate-matched antennas, IEEE Trans. Antennas Propagat.,Vol. 14, No. 1, pp. 17–21, January 1996.
32. R. B. Green, The Effect of Antenna Installations on the Echo Area of an Object, Report No.1109-3, ElectroScience Laboratory, Ohio State University, Columbus, OH, September 1961.
33. R. C. Hansen, Relationships between antennas as scatterers and as radiators, Proc. IEEE, Vol. 77, no. 5, pp. 659–662, May 1989.
34. R. E. Collin, Antennas and Radiowave Propagation, McGraw-Hill, New York, 1985.
35. R. E. Collin, The receiving antenna, in Antenna Theory, Part I , R. E. Collin and F. J. Zucker (Eds.), McGraw-Hill, New York, 1969.
36. R. F. Harrington, Theory of loaded scatterers, Proc. IEE (British), Vol. 111, pp. 617–623,April 1964.
37. R. J. Garbacz, the Determination of Antenna Parameters by Scattering Cross-Section Measurements, III. Antenna Scattering Cross Section, Report No. 1223-10, Antenna Laboratory, Ohio State University, Columbus, November 1962.
38. R. S. Elliott, Beamwidth and directivity of large scanning arrays, Microwave J., pp. 74–82,January 1964.
39. S. H. Dike and D. D. King, Absorption gain and backscattering cross section of the cylindrical antenna, Proc. IRE, 40, 1952.
40. Sinclair, The transmission and reflection of elliptically polarized waves, Proc. IRE, Vol.38, pp. 148–151, February 1950.
41. Special issue, IEEE Trans. Antennas Propag., Vol. 37, No. 5, May 1989.
42. Special issue, Proc. IEEE, Vol. 53, No. 8, August 1965.
43. Special issue, Proc. IEEE, Vol. 77, No. 5, May 1989.
44. T. Ruck, D. E. Barrick,W. D. Stuart, and C. K.Krichbaum, Radar Cross Section Handbook,Vols. 1 and 2, Plenum Press, New York, 1970.
45. W. R. Scott Jr., A general program for plotting three-dimensional antenna patterns, IEEE Antennas Propag. Soc. Newslett., pp. 6–11, December 1989.
46. W. R. Stone (Ed.), Radar Cross Sections of Complex Objects, IEEE Press, Piscataway, NJ,1989.
Chapter3
1. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, 2006.
2. C. H. Walter, Traveling Wave Antennas, McGraw-Hill, 1965, pp. 32–44.
3. D. Sievenpiper, “Artificial Impedance Surfaces,” Chapter 15, in Modern Antenna Handbook, C. A. Balanis (editor), John Wiley & Sons, pp. 737–777, 2008.
4. D. Sievenpiper, High-Impedance Electromagnetic Surfaces, Ph.D. dissertation, Department of Electrical Engineering, UCLA, 1999.
5. F.Yang andY. Rahmat-Samii, “Reflection Phase Characterization of the EBG Ground Plane for LowProfile Wire Antenna Applications,” IEEE Trans. Antenna Propagat., Vol. 51, No. 10, pp. 2691–2703, October 2003.
6. G. V. Eleftheriades and K. G. Balmain (editors), Negative-Refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, New York, 2005.
7. K. Fujimoto and J. R. James, Mobile Antenna Systems Handbook, Artech House, Norwood, MA, 1994.
8. M. A. Jensen and Y. Rahmat-Samii, “Performance Analysis of Antennas for Hand-Held Transceivers Using FDTD,” IEEE Trans. Antennas Propagat., Vol. 42, No. 8, pp. 1106–1113, August 1994.
9. N. Engheta and R. W. Ziolkowski (editors), Metamaterials: Physics and Engineering Explorations, N. Engheta, R. W. Ziolkowski (editors), IEEE Press, Wiley Inter-Science, New York, 2006.
10. P. M.Valanju, R. M.Walser, and A. P.Valanju, “Wave Refraction in Negative-Index Media; Always Positive and very Inhomogeneous,” Phys. Rev. Lett., vol. 88, no. 18, 187401:1–4, May 2002.
11. R. F. Schwartz, “Input Impedance of a Dipole or Monopole,” Microwave J.,Vol. 15, No. 12, p. 22, December 1972.
12. V. G. Veselago, “The Electromagnetics of Substances with Simultaneous Negative Values of 𝜀 and 𝜇,” Sov.Phys.-Usp., vol. 47, pp. 509–514, Jan.–Feb. 1968.
13. W. A. Wheeler, “Small Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-23, No. 4, pp. 462–469, July 1975.
14. W. A. Wheeler, “The Radiansphere Around a Small Antenna,” Proc. IRE, Vol. 47, pp. 1325–1331, August 1959.
15. W. A. Wheeler, “The Spherical Coil as an Inductor, Shield, or Antenna,” Proc. IRE,Vol. 46, pp. 1595–1602, September 1958 (correction, Vol. 48, p. 328, March 1960).
16. W. R. Scott, Jr., “A General Program for Plotting Three-Dimensional Antenna Patterns,” IEEE Antennas Propagat. Soc. Newsletter, pp. 6–11, December 1989.
Chapter5
1. F. McKinley, T. P. White, I. S. Maksymov, and K. R. Catchpole, “The Analytical Basis for the Resonances and Anti-Resonances of Loop Antennas and Meta-Material Ring Resonators,” Journal of Applied Physics, Vol. 112, No. 9, pp. 094911-094911-9, Nov. 2012.
2. F. McKinley, T. P. White, K. R. Catchpole, “Theory of the Circular Loop Antenna in the Terahertz, Infrared, and Optical Regions,” Journal of Applied Physics, Vol. 114, No. 4, pp. 044317-044317-10, 2013.
3. Shoamanesh and L. Shafai, “Properties of Coaxial Yagi Loop Arrays,” IEEE Trans. Antennas Propagat.,Vol. AP-26, No. 4, July 1978, pp. 547–550.
4. D. H. Werner, “An Exact Integration Procedure for Vector Potentials of Thin Circular Loop Antennas,” IEEE Trans. Antennas Propagat., Vol. 44, No. 2, February 1996, pp. 157–165.
5. D. Mahony, “Circular Microstrip-Patch Directivity Revisited: An Easily Computable Exact Expression,” IEEE Antennas Propagat. Mag., Vol. 45, No. 1, February 2003, pp. 120–122.
6. E. H. Newman, P. Bohley, and C. H.Walter, “Two Methods for Measurement of Antenna Efficiency,” IEEE Trans. Antennas Propagat., Vol. AP-23, No. 4, July 1975, pp. 457–461.
7. G. S. Smith, “Loop Antennas,” Chapter 5 in Antenna Engineering Handbook, 2nd ed., McGraw-Hill Book Co., New York, 1984.
8. G. S. Smith, “Radiation Efficiency of Electrically Small Multiturn Loop Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-20, No. 5, September 1972, pp. 656–657.
9. G. S. Smith, “The Proximity Effect in Systems of Parallel Conductors,” J. Appl. Phys., Vol. 43, No. 5, May 1972, pp. 2196–2203.
10. J. D. Kraus, Electromagnetics, 4th ed., McGraw-Hill Book Co., New York, 1992.
11. J. D. Mahony, “A Comment on Q-Type Integrals and Their Use in Expressions for Radiated Power,” IEEE Antennas Propagat. Mag., Vol. 45, No. 3, June 2003, pp. 127–138.
12. J. E. Storer, “Impedance of Thin-Wire Loop Antennas,” AIEE Trans., (Part I. Communication and Electronics),Vol. 75, Nov. 1956, pp. 606–619.
13. J. R. Wait, “Possible Influence of the Ionosphere on the Impedance of a Ground-Based Antenna,” J. Res. Natl. Bur. Std. (U.S.), Vol. 66D, September–October 1962, pp. 563–569.
14. K. Iizuka, R.W. P. King, and C.W. Harrison, Jr., “Self- and Mutual Admittances of Two Identical Circular Loop Antennas in a Conducting Medium and in Air,” IEEE Trans. Antennas Propagat., Vol. AP-14, No. 4, July 1966, pp. 440–450.
15. L. D. Licking and D. E. Merewether, “An Analysis of Thin-Wire Circular Loop Antennas of Arbitrary Size,” Report No. SC-RR-70-433, Sandia National Lab., Albuquerque, NM, Aug. 1970.
16. L. E. Vogler and J. L. Noble, “Curves of Input Impedance Change Due to Ground for Dipole Antennas,” U.S. National Bureau of Standards, Monograph 72, January 31, 1964.
17. P. L. Overfelt, “Near Fields of the Constant Current Thin Circular Loop Antenna of Arbitrary Radius,” IEEE Trans. Antennas Propagat., Vol. 44, No. 2, February 1996, pp. 166–171.
18. R. E. Collin and F. J. Zucher (eds.), Antenna Theory Part 2, Chapter 23 (by J. R.Wait), McGraw-Hill, New York, 1969.
19. R. King, “Theory of Antennas Driven from Two-Wire Line,” J. Appl. Phys., Vol. 20, 1949, p. 832. 31. D. G. Fink (ed.), Electronics Engineers’Handbook, Section 18, “Antennas” (byW. F. Croswell), McGraw-Hill, New York, pp. 18–22.
20. R. W. P. King, “Theory of the Center-Driven Square Loop Antenna,” IRE Trans. Antennas Propagat., Vol. AP-4, No. 4, July 1956, p. 393.
21. S. Adachi and Y. Mushiake, “Studies of Large Circular Loop Antenna,” Sci. Rep. Research Institute of Tohoku University (RITU), B, Vol. 9, No. 2, 1957, pp. 79–103.
22. S. Ito, N. Inagaki, and T. Sekiguchi, “An Investigation of the Array of Circular-Loop Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-19, No. 4, July 1971, pp. 469–476.
23. S. V. Savov, “A Comment on the Radiation Resistance,” IEEE Antennas Propagat. Mag., Vol. 45, No. 3, June 2003, p. 129.
24. S. V. Savov, “An Efficient Solution of a Class of Integrals Arising in Antenna Theory,” IEEE Antennas Propagat. Mag., Vol. 44, No. 5, October 2002, pp. 98–101.
25. T. T. Wu, “Theory of Thin Circular Antenna,” J. Math Phys., Vol. 3, pp. 1301–1304, Nov.–Dec. 1962.
26. T. Tsukiji and S. Tou, “On Polygonal Loop Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-28, No. 4, July 1980, pp. 571–575.
Chapter6
1. Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless Communications: Vision and Potential Techniques. IEEE Netw. 2019, 33, 70–75.
2. Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun.Mag. 2020, 58, 55–61.
3. Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What Should 6G Be? Nat. Electron. 2020, 3, 20–29.
4. Imoize, A.L.; Adedeji, O.; Tandiya, N.; Shetty, S. 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. Sensors 2021, 21, 1709.
5. Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8,133995–134030.
6. Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975.
7. Kleine-Ostmann, T.; Nagatsuma, T. A Review on Terahertz Communications Research. J. Infrared Millim. Terahertz Waves 2011, 32,143–171.
8. Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.-S. Terahertz Band: The Last Piece of R.F. Spectrum Puzzle for Communication Systems. IEEE Open J. Commun. Soc. 2019, 1, 1–32.
9. O'Hara, J.F.; Ekin, S.; Choi, W.; Song, I. A Perspective on Terahertz Next-Generation Wireless Communications. Technologies 2019,7, 43.
10. Jamshed, MA; Nauman, A.; Abbasi, M.A.B.; Kim, S.W. Antenna Selection and Designing for THz Applications: Suitability and Performance Evaluation: A Survey. IEEE Access 2020, 8, 113246–113261.
11. Peng, B.; Guan, K.; Rey, S.; Kurner, T. Power-Angular Spectra Correlation Based Two Step Angle of Arrival Estimation for Future Indoor Terahertz Communications. IEEE Trans. Antennas Propag. 2019, 67, 7097–7105.
12. Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169.
13. Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. In Proceedings of the IEEE Transactions on Wireless Communications; Institute of Electrical and ElectronicsEngineers Inc.: Piscataway, NJ, USA, 2019; Volume 18, pp. 4157–4170.
14. Basar, E.; Renzo, M.D.; de Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R.; di Renzo, M. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773.
15. Elmossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002.
16. Alexandropoulos, G.C.; Lerosey, G.; Debbah, M.; Fink, M. Reconfigurable Intelligent Surfaces and Metamaterials: The Potential of Wave Propagation Control for 6GWireless Communications. arXiv 2020, arXiv:2006.11136.
17. Di, B.; Zhang, H.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Hybrid Beamforming for Reconfigurable Intelligent Surface Based Multi-User Communications: Achievable Rates with Limited Discrete Phase Shifts. IEEE J. Sel. Areas Commun. 2020, 38, 1809–1822.
18. Yang, B.; Cao, X.; Huang, C.; Guan, Y.L.; Yuen, C.; di Renzo, M.; Niyato, D.; Debbah, M.; Hanzo, L. Spectrum Learning-Aided Reconfigurable Intelligent Surfaces for "Green" 6G Networks. IEEE Netw. 2021, 35, 20–26.
19. Liaskos, C.; Tsioliaridou, A.; Pitsillides, A.; Akyildiz, I.F.; Kantartzis, N.V.; Lalas, A.X.; Dimitropoulos, X.; Ioannidis, S.; Kafesaki, M.; Soukoulis, C.M. Design and Development of Software Defined Metamaterials for Nanonetworks. IEEE Circuits Syst.Mag. 2015, 15, 12–25.
20. Abadal, S.; Liaskos, C.; Tsioliaridou, A.; Ioannidis, S.; Pitsillides, A.; Sole-Parata, J.; Alarcon, E.; Cabellos-Aparicio, A. Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis. IEEE Access 2017, 5, 6225–6235.
21. Zhao, J. A Survey of Intelligent Reflecting Surfaces (IRSs): Towards 6G Wireless Communication Networks. arXiv 2019,arXiv:1907.04789.
22. Pillay, N.; Xu, H. Large Intelligent Surfaces: Random Waypoint Mobility and Two-Way Relaying. Int. J. Commun. Syst. 2020,33, e4505.
23. Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150.
24. Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalised Laws of Reflection and Refraction. Science 2011, 334, 333–337.
25. Wong, J.P.S.; Epstein, A.; Eleftheriades, G.V. ReflectionlessWide-Angle Refracting Metasurfaces. IEEE Antennas Wirel. Propag. Lett.2016, 15, 1293–1296. [CrossRef]
26. Chen, M.; Abdo-Sánchez, E.; Epstein, A.; Eleftheriades, G.V. Theory, Design, and Experimental Verification of a Reflectionless Bianisotropic Huygens' Metasurface for Wide-Angle Refraction. Phys. Rev. B 2018, 97, 125433.
27. Ho, J.S.; Qiu, B.; Tanabe, Y.; Yeh, A.J.; Fan, S.; Poon, A.S.Y. Planar Immersion Lens with Metasurfaces. Phys. Rev. B-Condens. Matter Mater. Phys. 2015, 91, 1–8.
28. Zhuang, Z.P.; Chen, R.; Fan, Z.B.; Pang, X.N.; Dong, J.W. High Focusing Efficiency in Subdiffraction Focusing Metalens.Nanophotonics 2019, 8, 1279–1289. [CrossRef]
29. Yang, F.; Raeker, B.O.; Nguyen, D.T.; Miller, J.D.; Xiong, Z.; Grbic, A.; Ho, J.S. Antireflection, and wavefront Manipulation with Cascaded Metasurfaces. Phys. Rev. Appl. 2020, 14, 064044. [CrossRef]
30. Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials. Light Sci. Appl. 2014, 3, e218. [CrossRef]
31. della Giovampaola, C.; Engheta, N. Digital Metamaterials. Nat. Mater. 2014, 13, 1115–1121.
32. Gao, L.H.; Cheng, Q.; Yang, J.; Ma, S.J.; Zhao, J.; Liu, S.; Chen, H.B.; He, Q.; Jiang, W.X.; Ma, H.F.; et al. Broadband Diffusion of Terahertz Waves by Multi-Bit Coding Metasurfaces. Light Sci. Appl. 2015, 4, e324.
33. Liu, S.; Cui, T.J.; Zhang, L.; Xu, Q.; Wang, Q.; Wan, X.; Gu, J.Q.; Tang, W.X.; Qing Qi, M.; Han, J.G.; et al. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Adv. Sci. 2016, 3, 1600156.
34. Ma, Q.; Shi, C.B.; Bai, G.D.; Chen, T.Y.; Noor, A.; Cui, T.J. Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit. Adv. Opt. Mater. 2017, 5, 1700548.
35. Liu, S.; Cui, T.J. Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials. Adv. Opt. Mater. 2017, 5, 1700624.
36. Ma, Q.; Chen, L.; Jing, H.B.; Hong, Q.R.; Cui, H.Y.; Liu, Y.; Li, L.; Cui, T.J. Controllable and Programmable Nonreciprocity Based on Detachable Digital Coding Metasurface. Adv. Opt. Mater. 2019, 7, 1901285.
37. Wu, L.W.; Ma, H.F.; Wu, R.Y.; Xiao, Q.; Gou, Y.; Wang, M.; Wang, Z.X.; Bao, L.; Wang, H.L.; Qing, Y.M.; et al. Transmission-Reflection Controls and Polarization Controls of Electromagnetic Holograms by a Reconfigurable Anisotropic Digital Coding Metasurface. Adv. Opt. Mater. 2020, 8, 2001065.
38. Wan, X.; Qi, M.Q.; Chen, T.Y.; Cui, T.J. Field-Programmable Beam Reconfiguring Based on Digitally-Controlled Coding Metasurface. Sci. Rep. 2016, 6, 20663. [CrossRef]
39. Yang, H.; Cao, X.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A Programmable Metasurface with Dynamic Polarisation, Scattering and Focusing Control. Sci. Rep. 2016, 6, 35692.
40. Han, R.; Hu, Z.; Wang, C.; Holloway, J.; Yi, X.; Kim, M.; Mawdsley, J. Filling the Gap: Silicon Terahertz Integrated Circuits Offer Our Best Bet. IEEE Microw. Mag. 2019, 20, 80–93.
41. Abadal, S.; Cui, T.J.; Low, T.; Georgiou, J. Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 6–19.
42. Bao, L.; Cui, T.J. Tunable, Reconfigurable, and Programmable Metamaterials. Microw. Opt. Technol. Lett. 2020, 62, 9–32.
43. Tsilipakos, O.; Tasolamprou, A.C.; Pitilakis, A.; Liu, F.; Wang, X.; Mirmoosa, M.S.; Tzarouchis, D.C.; Abadal, S.; Taghvaee, H.; Liaskos, C.; et al. Toward Intelligent Metasurfaces: The Progress from Globally Tunable Metasurfaces to Software-Defined Metasurfaces with an Embedded Network of Controllers. Adv. Opt. Mater. 2020, 8, 2000783. [CrossRef]
44. Pitchappa, P.; Kumar, A.; Singh, R.; Lee, C.; Wang, N. Terahertz MEMS Meta devices. J. Micromech. Microeng. 2021, 31, 113001.
45. Xu, J.; Yang, R.; Fan, Y.; Fu, Q.; Zhang, F. A Review of Tunable Electromagnetic Metamaterials with Anisotropic Liquid Crystals. Front. Phys. 2021, 9, 67.
46. Mandal, A.; Cui, Y.; McRae, L.; Gholipour, B. Reconfigurable Chalcogenide Phase Change Metamaterials: A Material, Device, and Fabrication Perspective. J. Phys. Photonics 2021, 3, 022005.
47. Guo, T.; Argyropoulos, C. Recent Advances in Terahertz Photonic Technologies Based on Graphene and Their Applications. Adv. Photonics Res. 2021, 2, 2000168. [CrossRef]
48. Li, L.; Jun Cui, T.; Ji, W.; Liu, S.; Ding, J.; Wan, X.; Bo Li, Y.; Jiang, M.; Qiu, C.W.; Zhang, S. Electromagnetic Reprogrammable Coding-Metasurface Holograms. Nat. Commun. 2017, 8, 1–7.
49. Zhang, X.G.; Jiang, W.X.; Jiang, H.L.; Wang, Q.; Tian, H.W.; Bai, L.; Luo, Z.J.; Sun, S.; Luo, Y.; Qiu, C.W.; et al. An Optically Driven Digital Metasurface for Programming Electromagnetic Functions. Nat. Electron. 2020, 3, 165–171.
50. Huang, C.; Zhang, C.; Yang, J.; Sun, B.; Zhao, B.; Luo, X. Reconfigurable Metasurface for Multifunctional Control of Electromagnetic Waves. Adv. Opt. Mater. 2017, 5, 1700485.
51. Luo, Z.; Wang, Q.; Zhang, X.G.; Wu, J.W.; Dai, J.Y.; Zhang, L.; Wu, H.T.; Zhang, H.C.; Ma, H.F.; Cheng, Q.; et al. Intensity-Dependent Metasurface with Digitally Reconfigurable Distribution of Nonlinearity. Adv. Opt. Mater. 2019, 7, 1900792.
52. Venkatesh, S.; Lu, X.; Saeidi, H.; Sengupta, K. A High-Speed Programmable and Scalable Terahertz Holographic Metasurface Based on Tiled CMOS Chips. Nat. Electron. 2020, 3, 785–793.
53. Liu, Y.; Sun, T.; Xu, Y.; Wu, X.; Bai, Z.; Sun, Y.; Li, H.; Zhang, H.; Chen, K.; Ruan, C.; et al. Active Tunable THz Metamaterial Array Implemented in CMOS Technology. J. Phys. D Appl. Phys. 2021, 54, 085107.
54. Chen, H.T.; Padilla, W.J.; Zide, JMO; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active Terahertz Metamaterial Devices. Nature 2006, 444, 597–600.
55. Chan, W.L.; Chen, H.T.; Taylor, A.J.; Brener, I.; Cich, M.J.; Mittleman, D.M. A Spatial Light Modulator for Terahertz Beams. Appl.Phys. Lett. 2009, 94, 213511.
56. Shrekenhamer, D.; Montoya, J.; Krishna, S.; Padilla, W.J. Four-Color Metamaterial Absorber THz Spatial Light Modulator. Adv.Opt. Mater. 2013, 1, 905–909.
57. Karl, N.; Reichel, K.; Chen, H.T.; Taylor, A.J.; Brener, I.; Benz, A.; Reno, J.L.; Mendis, R.; Mittleman, D.M. An Electrically Driven Terahertz Metamaterial Diffractive Modulator with More than 20 D.B. of Dynamic Range. Appl. Phys. Lett. 2014, 104, 091115.
58. Su, X.; Ouyang, C.; Xu, N.; Cao, W.; Wei, X.; Song, G.; Gu, J.; Tian, Z.; O'Hara, J.F.; Han, J.; et al. Active Metasurface Terahertz Deflector with Phase Discontinuities. Opt. Express 2015, 23, 27152.
59. Dyakonov, M.; Shur, M. ShallowWater Analogy for a Ballistic Field Effect Transistor: New Mechanism of PlasmaWave Generation by Dc Current. Phys. Rev. Lett. 1993, 71, 2465.
60. Dyakonov, M.; Shur, M. Detection, Mixing, and Frequency Multiplication of Terahertz Radiation by Two-Dimensional Electronic Fluid. IEEE Trans. Electron Devices 1996, 43, 380–387.
61. Shrekenhamer, D.; Rout, S.; Strikwerda, A.C.; Bingham, C.; Averitt, R.D.; Sonkusale, S.; Padilla, W.J. High Speed Terahertz Modulation from Metamaterials with Embedded High Electron Mobility Transistors. Opt. Express 2011, 19, 9968–9975.
62. Rout, S.; Sonkusale, S.R. A Low-Voltage High-Speed Terahertz Spatial Light Modulator Using Active Metamaterial. APL Photonics 2016, 1, 086102.
63. Nouman, M.T.; Kim, H.W.; Woo, J.M.; Hwang, J.H.; Kim, D.; Jang, J.H. Terahertz Modulator Based on Metamaterials Integrated with Metal-Semiconductor-Metal Varactors. Sci. Rep. 2016, 6, 26452.
64. Zhao, Y.; Wang, L.; Zhang, Y.; Qiao, S.; Liang, S.; Zhou, T.; Zhang, X.; Guo, X.; Feng, Z.; Lan, F.; et al. High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 Nm Two-Dimensional Electron Gas Metasurface. Nano Lett. 2019, 19, 7588–7597.
65. Lee, G.; Nouman, M.T.; Hwang, J.H.; Kim, H.W.; Jang, J.H. Enhancing the Modulation Depth of a Dynamic Terahertz Metasurface by Integrating into an Asymmetric Fabry-Pérot Cavity. AIP Adv. 2018, 8, 095310.
66. Zhang, Y.; Qiao, S.; Liang, S.; Wu, Z.; Yang, Z.; Feng, Z.; Sun, H.; Zhou, Y.; Sun, L.; Chen, Z.; et al. Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure. Nano Lett. 2015, 15, 3501–3506.
67. Zhang, Y.; Zhao, Y.; Liang, S.; Zhang, B.; Wang, L.; Zhou, T.; Kou, W.; Lan, F.; Zeng, H.; Han, J.; et al. Large Phase Modulation of THz Wave via an Enhanced Resonant Active HEMT Metasurface. Nanophotonics 2018, 8, 153–170.
68. Carrasco, E.; Tamagnone, M.; Perruisseau-Carrier, J. Tunable Graphene Reflective Cells for THz Reflectarrays and Generalized Law of Reflection. Appl. Phys. Lett. 2013, 102, 104103.
69. Wang, R.; Ren, X.G.; Yan, Z.; Jiang, L.J.; Sha, W.E.I.; Shan, G.C. Graphene Based Functional Devices: A Short Review. Front. Phys. 2019, 14, 13603.
70. Sensale-Rodriguez, B.; Yan, R.; Rafique, S.; Zhu, M.; Li,W.; Liang, X.; Gundlach, D.; Protasenko, V.; Kelly, M.M.; Jena, D.; et al. Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-Absorption Modulators. Nano Lett. 2012, 12, 4518–4522.
71. Sensale-Rodriguez, B.; Rafique, S.; Yan, R.; Zhu, M.; Protasenko, V.; Jena, D.; Liu, L.; Xing, H.G. Terahertz Imaging Employing Graphene Modulator Arrays. Opt. Express 2013, 21, 2324–2330.
72. Malevich, Y.; Ergoktas, M.S.; Bakan, G.; Steiner, P.; Kocabas, C. Video-Speed Graphene Modulator Arrays for Terahertz Imaging Applications. ACS Photonics 2020, 7, 2374–2380.
73. Chen, D.; Yang, J.; Huang, J.; Bai, W.; Zhang, J.; Zhang, Z.; Xu, S.; Xie, W. The Novel Graphene Metasurfaces Based on Split-Ring Resonators for Tunable Polarization Switching and Beam Steering at Terahertz Frequencies. Carbon 2019, 154, 350–356.
74. Chen, D.; Yang, J.; Huang, J.; Zhang, Z.; Xie, W.; Jiang, X.; He, X.; Han, Y.; Zhang, Z.; Yu, Y. Continuously Tunable Metasurfaces Controlled by Single Electrode Uniform Bias-Voltage Based on Nonuniform Periodic Rectangular Graphene Arrays. Opt. Express 2020, 28, 29306.
75. Zhang, Y.; Feng, Y.; Zhao, J.; Jiang, T.; Zhu, B. Terahertz Beam Switching by Electrical Control of Graphene-Enabled Tunable Metasurface. Sci. Rep. 2017, 7, 14147.
76. Xu, J.; Liu, W.; Song, Z. Graphene-Based Terahertz Metamirror with Wavefront Reconfiguration. Opt. Express 2021, 29, 39574.
77. Xiao, B.; Zhang, Y.; Tong, S.; Yu, J.; Xiao, L. Novel Tunable Graphene-Encoded Metasurfaces on an Uneven Substrate for Beam-Steering in Far-Field at the Terahertz Frequencies. Opt. Express 2020, 28, 7125.
78. Xu, J.; Liu, W.; Song, Z. Terahertz Dynamic Beam Steering Based on Graphene Coding Metasurfaces. IEEE Photonics J. 2021, 13, 4600409.
79. Momeni, A.; Rouhi, K.; Rajabalipanah, H.; Abdolali, A. An Information Theory-Inspired Strategy for Design of Re-Programmable Encrypted Graphene-Based Coding Metasurfaces at Terahertz Frequencies. Sci. Rep. 2018, 8, 6200.
80. Hosseininejad, S.E.; Rouhi, K.; Neshat, M.; Faraji-Dana, R.; Cabellos-Aparicio, A.; Abadal, S.; Alarcón, E. Reprogrammable Graphene-Based Metasurface Mirror with Adaptive Focal Point for THz Imaging. Sci. Rep. 2019, 9, 2868.
81. Hosseininejad, S.E.; Rouhi, K.; Neshat, M.; Cabellos-Aparicio, A.; Abadal, S.; Alarcon, E. Digital Metasurface Based on Graphene: An Application to Beam Steering in Terahertz Plasmonic Antennas. IEEE Trans. Nanotechnol. 2019, 18, 734–746.
82. Wang, B.; Luo, X.; Lu, Y.; Li, G. Full 360 Terahertz Dynamic Phase Modulation Based on Doubly Resonant Graphene–Metal Hybrid Metasurfaces. Nanomaterials 2021, 11, 3157.]
83. Tamagnone, M.; Capdevila, S.; Lombardo, A.;Wu, J.; Centeno, A.; Zurutuza, A.; Ionescu, A.M.; Ferrari, A.C.; Mosig, J.R. Graphene Reflectarray Metasurface for Terahertz Beam Steering and Phase Modulation. arXiv 2018, arXiv:1806.02202.
84. Cong, L.; Srivastava, Y.K.; Zhang, H.; Zhang, X.; Han, J.; Singh, R. All-Optical Active THz Metasurfaces for Ultrafast Polarization Switching and Dynamic Beam Splitting. Light Sci. Appl. 2018, 7, 28.
85. Cong, L.; Singh, R. Spatiotemporal Dielectric Metasurfaces for Unidirectional Propagation and Reconfigurable Steering of Terahertz Beams. Adv. Mater. 2020, 32, 2001418.
86. Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-Change Materials for Non-Volatile Photonic Applications. Nat. Photonics 2017, 11, 465–476.
87. Raeis-Hosseini, N.; Rho, J. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices. Materials 2017, 10, 1046. [CrossRef] [PubMed]
88. Wang, L.; Zhang, Y.; Guo, X.; Chen, T.; Liang, H.; Hao, X.; Hou, X.; Kou, W.; Zhao, Y.; Zhou, T.; et al. A Review of THz Modulators with Dynamic Tunable Metasurfaces. Nanomaterials 2019, 9, 965.
89. Hashemi, M.R.M.; Yang, S.H.; Wang, T.; Sepúlveda, N.; Jarrahi, M. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces. Sci. Rep. 2016, 6, 35439.
90. Ding, F.; Zhong, S.; Bozhevolnyi, S.I. Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies. Adv. Opt. Mater. 2018, 6, 1701204.
91. Li, J.; Yang, Y.; Li, J.; Zhang, Y.; Zhang, Z.; Zhao, H.; Li, F.; Tang, T.; Dai, H.; Yao, J. All-Optical Switchable Vanadium Dioxide Integrated Coding Metasurfaces for Wavefront and Polarization Manipulation of Terahertz Beams. Adv. Theory Simul. 2020, 3, 1900783.
92. Wang, S.; Kang, L.; Werner, D.H. Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO2). Sci. Rep. 2017, 7, 4326.
93. Wang, H.; Deng, L.; Zhang, C.; Qu, M.; Wang, L.; Li, S. Dual-Band Reconfigurable Coding Metasurfaces Hybridised with Vanadium Dioxide for Wavefront Manipulation at Terahertz Frequencies. Microw. Opt. Technol. Lett. 2019, 61, 2847–2853.
94. Pan, W.-M.; Li, J.-S.; Zhou, C. Switchable Digital Metasurface Based on Phase Change Material in the Terahertz Region. Opt. Mater. Express 2021, 11, 1070.
95. Shabanpour, J.; Beyraghi, S.; Cheldavi, A. Ultrafast Reprogrammable Multifunctional Vanadium-Dioxide-Assisted Metasurface for Dynamic THz Wavefront Engineering. Sci. Rep. 2020, 10, 1–14.
96. Jiang, M.; Hu, F.; Zhang, L.; Quan, B.; Xu, W.; Du, H.; Xie, D.; Chen, Y. Electrically Triggered VO2 Reconfigurable Metasurface for Amplitude and Phase Modulation of Terahertz Wave. J. Lightwave Technol. 2021, 39, 3488–3494.
97. Chen, B.; Wu, J.; Li, W.; Zhang, C.; Fan, K.; Xue, Q.; Chi, Y.; Wen, Q.; Jin, B.; Chen, J.; et al. Programmable Terahertz Metamaterials with Nonvolatile Memory. Laser Photonics Reviews 2022, 2100472.
98. Pitchappa, P.; Kumar, A.; Prakash, S.; Jani, H.; Venkatesan, T.; Singh, R. Chalcogenide Phase Change Material for Active Terahertz Photonics. Adv. Mater. 2019, 31, 1808157.
99. Kodama, C.H.; Coutu, R.A. Tunable Split-Ring Resonators Using Germanium Telluride. Appl. Phys. Lett. 2016, 108, 231901.
100. Gwin, A.H.; Kodama, C.H.; Laurvick, T.V.; Coutu, R.A.; Today, P.F. Improved Terahertz Modulation Using Germanium Telluride (GeTe) Chalcogenide Thin Films. Appl. Phys. Lett. 2015, 107, 031904.
101. Lin, Q.W.; Wong, H.; Huitema, L.; Crunteanu, A. Coding Metasurfaces with Reconfiguration Capabilities Based on Optical Activation of Phase-Change Materials for Terahertz Beam Manipulations. Adv. Opt. Mater. 2021, 10, 2101699.
102. Savo, S.; Shrekenhamer, D.; Padilla, W.J. Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications. Adv. Opt. Mater. 2014, 2, 275–279. [CrossRef]
103. Vasic, B.; Isic, G.; Beccherelli, R.; Zografopoulos, D.C. Tunable Beam Steering at Terahertz Frequencies Using Reconfigurable Metasurfaces Coupled with Liquid Crystals. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7701609.
104. Buchner, O.; Podolak, N.; Kaltenecker, K.; Walther, M.; Fedotov, V.A. Metasurface-Based Optical Liquid Crystal Cell as an Ultrathin Spatial Phase Modulator for THz Applications. ACS Photonics 2020, 7, 3199–3206.
105. Wu, J.; Shen, Z.; Ge, S.; Chen, B.; Shen, Z.;Wang, T.; Zhang, C.; Hu,W.; Fan, K.; Padilla, W.; et al. Liquid Crystal Programmable Metasurface for Terahertz Beam Steering. Appl. Phys. Lett. 2020, 116, 131104.
106. Liu, C.X.; Yang, F.; Fu, X.J.; Wu, J.W.; Zhang, L.; Yang, J.; Cui, T.J. Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals. Adv. Opt. Mater. 2021, 9, 2100932.
107. Oberhammer, J. THz MEMS-Micromachining Enabling New Solutions at Millimeter and Submillimeter Frequencies. In Proceedings of the 2016 Global Symposium on MillimeterWaves, GSMM 2016 and ESA Workshop on Millimetre-Wave Technology and Applications, Kuala Lumpur, Malaysia, 13–16 November 2017.
108. Kappa, J.; Sokoluk, D.; Klingel, S.; Shemelya, C.; Oesterschulze, E.; Rahm, M. Electrically Reconfigurable Micromirror Array for Direct Spatial Light Modulation of Terahertz Waves over a Bandwidth Wider Than 1 THz. Sci. Rep. 2019, 9, 2597.
109. Cong, L.; Pitchappa, P.; Wu, Y.; Ke, L.; Lee, C.; Singh, N.; Yang, H.; Singh, R. Active Multifunctional Microelectromechanical System Meta devices: Applications in Polarization Control, Wavefront Deflection, and Holograms. Adv. Opt. Mater. 2017, 5, 1600716.
110. Manjappa, M.; Pitchappa, P.; Singh, N.; Wang, N.; Zheludev, N.I.; Lee, C.; Singh, R. Reconfigurable MEMS Fano Metasurfaces with Multiple-Input–Output States for Logic Operations at Terahertz Frequencies. Nat. Commun. 2018, 9, 4056.
111. Shen, Y.; Wang, J.; Wang, Q.; Qiao, X.; Wang, Y.; Xu, D. Broadband Tunable Terahertz Beam Deflector Based on Liquid Crystals and Graphene. Crystals 2021, 11, 1141.
112. Li, H.; Xu, W.; Cui, Q.; Wang, Y.; Yu, J. Theoretical Design of a Reconfigurable Broadband Integrated Metamaterial Terahertz Device. Opt. Express 2020, 28, 40060.
113. Chen, K.; Zhang, X.; Chen, X.; Wu, T.; Wang, Q.; Zhang, Z.; Xu, Q.; Han, J.; Zhang, W. Active Dielectric Metasurfaces for Switchable Terahertz Beam Steering and Focusing. IEEE Photonics J. 2021, 13, 4600111.
114. Zhang, W.; Zhang, B.; Fang, X.; Cheng, K.; Chen, W.; Wang, Z.; Hong, D.; Zhang, M. Microfluid-Based Soft Metasurface for Tunable Optical Activity in THzWave. Opt. Express 2021, 29, 8786.
115. Caldwell, J.D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T.L.; Maier, S.A.; Glembocki, O.J. Low-Loss, Infrared and Terahertz Nanophotonics Using Surface Phonon Polaritons. Nanophotonics 2015, 4, 44–68.
116. Basov, D.N.; Fogler, M.M.; García De Abajo, F.J. Polaritons in van Der Waals Materials. Science 2016, 354, aag1992.
117. Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in Two-Dimensional Layered Materials. Nat. Mater. 2017, 16, 182–194.
118. Dai, Z.; Hu, G.; Ou, Q.; Zhang, L.; Xia, F.; Garcia-Vidal, F.J.; Qiu, C.W.; Bao, Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem. Rev. 2020, 120, 6197–6246.
119. Ma, W.; Shabbir, B.; Ou, Q.; Dong, Y.; Chen, H.; Li, P.; Zhang, X.; Lu, Y.; Bao, Q. Anisotropic Polaritons in van Der Waals Materials. InfoMat 2020, 2, 777–790.120. Song, M.; Jayathurathnage, P.; Zanganeh, E.; Krasikova, M.; Smirnov, P.; Belov, P.; Kapitanova, P.; Simovski, C.; Tretyakov, S.; Krasnok, A.Wireless Power Transfer Based on Novel Physical Concepts. Nat. Electron. 2021, 4, 707–716.
121. Ni, G.X.; McLeod, A.S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K.W.; Sunku, S.S.; Jiang, B.Y.; Hone, J.; Dean, C.R.; et al. Fundamental Limits to Graphene Plasmonics. Nature 2018, 557, 530–533.
122. Alonso-González, P.; Nikitin, AY; Gao, Y.; Woessner, A.; Lundeberg, M.B.; Principi, A.; Forcellini, N.; Yan, W.; Vélez, S.; Huber, A.J.; et al. Acoustic Terahertz Graphene Plasmons Revealed by Photocurrent Nanoscopy. Nat. Nanotechnol. 2017, 12, 31–35.
123. Walsh, B.M.; Foster, J.C.; Erickson, P.J.; Sibeck, D.G. Tunable Phonon Polaritons in Atomically Thin van DerWaals Crystals of Boron Nitride. Science 2014, 343, 1122–1125.
124. Ma, W.; Alonso-González, P.; Li, S.; Nikitin, A.Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P.; Vélez, S.; et al. In-Plane Anisotropic and Ultra-Low-Loss Polaritons in a Natural van DerWaals Crystal. Nature 2018, 562, 557–562.
125. Zheng, Z.; Xu, N.; Oscurato, S.L.; Tamagnone, M.; Sun, F.; Jiang, Y.; Ke, Y.; Chen, J.; Huang, W.; Wilson, W.L.; et al. A Mid-Infrared Biaxial Hyperbolic van DerWaals Crystal. Sci. Adv. 2019, 5, eaav86902019.
126. Wu, Y.; Ou, Q.; Yin, Y.; Li, Y.; Ma, W.; Yu, W.; Liu, G.; Cui, X.; Bao, X.; Duan, J.; et al. Chemical Switching of Low-Loss Phonon Polaritons in -MoO3 by Hydrogen Intercalation. Nat. Commun. 2020, 11, 2646.
127. Taboada-Gutiérrez, J.; Álvarez-Pérez, G.; Duan, J.; Ma, W.; Crowley, K.; Prieto, I.; Bylinkin, A.; Autore, M.; Volkova, H.; Kimura, K.; et al. Broad Spectral Tuning of Ultra-Low-Loss Polaritons in a van DerWaals Crystal by Intercalation. Nat. Mater. 2020, 19, 964–968.
128. Wu, Y.; Ou, Q.; Dong, S.; Hu, G.; Si, G.; Dai, Z.; Qiu, C.W.; Fuhrer, M.S.; Mokkapati, S.; Bao, Q. Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces. Adv. Mater. 2021, 33, 2008070.
129. Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; et al. Topological Polaritons and Photonic Magic Angles in Twisted -MoO3 Bilayers. Nature 2020, 582, 209–213.
130. Dai, S.; Ma, Q.; Liu, M.K.; Andersen, T.; Fei, Z.; Goldflam, M.D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; et al. Graphene on Hexagonal Boron Nitride as a Tunable Hyperbolic Metamaterial. Nat. Nanotechnol. 2015, 10, 682–686.
131. Zhang, Q.; Ou, Q.; Hu, G.; Liu, J.; Dai, Z.; Fuhrer, M.S.; Bao, Q.; Qiu, C.W. Hybridized Hyperbolic Surface Phonon Polaritons at -MoO3and Polar Dielectric Interfaces. Nano Lett. 2021, 21, 3112–3119.
132. Álvarez-Pérez, G.; González-Morán, A.; Capote-Robayna, N.; Voronin, K.V.; Duan, J.; Volkov, V.S.; Alonso-González, P.;Nikitin, A.Y. Active Tuning of Highly Anisotropic Phonon Polaritons in Van Der Waals Crystal Slabs by Gated Graphene. ACS Photonics 2022.
133. Zeng, Y.; Ou, Q.; Liu, L.; Zheng, C.; Wang, Z.; Gong, Y.; Liang, X.; Zhang, Y.; Hu, G.; Yang, Z.; et al. Tailoring Topological Transition of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. arXiv 2022, arXiv:2201.01412.
134. Huang, C.X.; Zhang, J.; Cheng, Q.; Cui, T.J. Polarization Modulation for Wireless Communications Based on Metasurfaces. Adv. Funct. Mater. 2021, 31, 2103379.
135. Chen, X.; Ke, J.C.; Tang, W.; Chen, M.Z.; Dai, J.Y.; Basar, E.; Jin, S.; Cheng, Q.; Cui, T.J. Design and Implementation of MIMO Transmission Based on Dual-Polarized Reconfigurable Intelligent Surface. IEEE Wirel. Commun. Lett. 2021, 10, 2155–2159.
136. Wong, H.; Wang, K.X.; Huitema, L.; Crunteanu, A. Active Meta Polarizer for Terahertz Frequencies. Sci. Rep. 2020, 10, 15382.
137. Nakanishi, T.; Nakata, Y.; Urade, Y.; Okimura, K. Broadband Operation of Active Terahertz Quarter-Wave Plate Achieved with Vanadium-Dioxide-Based Metasurface Switchable by Current Injection. Appl. Phys. Lett. 2020, 117, 091102.
138. Zhang, M.; Zhang, W.; Liu, A.Q.; Li, F.C.; Lan, C.F. Tunable Polarization Conversion and Rotation Based on a Reconfigurable Metasurface. Sci. Rep. 2017, 7, 091102.
139. Lee, W.S.L.; Nirantar, S.; Headland, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Broadband Terahertz Circular-Polarization Beam Splitter. Adv. Opt. Mater. 2018, 6, 1700852.
140. Castaldi, G.; Zhang, L.; Moccia, M.; Hathaway, A.Y.; Tang, W.X.; Cui, T.J.; Galdi, V. Joint Multi-Frequency Beam Shaping and Steering via Space–Time-Coding Digital Metasurfaces. Adv. Funct. Mater. 2021, 31, 2007620.
141. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, "6G wireless networks: Vision, requirements, architecture, and key technologies," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp.28–41, Sep. 2019.
142. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, vol. 7, pp. 78 729–78 757, Jun. 2019.
143. X. Gao, L. Dai, S. Han, C. L. I, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mmwave MIMO systems with large antenna arrays," IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp.998–1009, Apr. 2016.
144. C. Lin and G. Y. Li, "Terahertz communications: An array-of-subarrays solution," IEEE Commun. Mag., vol. 54, no. 12, pp. 124–131, Dec. 2016.
145. C. Han and I. F. Akyildiz, "Distance-aware bandwidth-adaptive resource allocation for wireless systems in the terahertz band," IEEE Trans. THz Sci. Technol., vol. 6, no. 4, pp. 541–553, Jun. 2016.
146. IEEE standard for high data rate wireless multi-media networks amendment 2: 100 Gb/s wireless switched point-to-point physical layer," IEEE Standard 802.15.3d, 2017.
147. Z. Lin, M. Lin, J. Wang, T. de Cola, and J. Wang, "Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access," IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 657–670, Jun. 2019.
148. I. F. Akyildiz, J. M. Jornet, and C. Han, "Teranets: Ultra-broadband communication networks in the terahertz band," IEEE Wireless Commun., vol. 21, no. 4, pp. 130–135, Aug. 2014.
149. J. Tan and L. Dai, "Delay-phase precoding for THz massive MIMO with beam split," in Proc. IEEE GLOBECOM 2019, Dec. 2019, pp. 1–6.
150. R. Mendez-Rial, C. Rusu, N. Gonzalez-Prelcic, A. Alkhateeb, and R. W. Heath, "Hybrid MIMO architectures for millimetre wave communications: Phase shifters or switches?" IEEE Access, vol. 4, pp. 247–267, Jan. 2016.
151. A. Alkhateeb, G. Leus, and R. W. Heath, "Limited feedback hybrid precoding for multi-user millimetre wave systems," IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.
152. X. Yu, J. Shen, J. Zhang, and K. B. Letaief, "Alternating minimisation algorithms for hybrid precoding in millimetre wave MIMO systems," IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 485–500, Apr.2016.
153. Z. Cao, Q. Ma, A. B. Smolders, Y. Jiao, M. J. Wale, C. W. Oh, H. Wu, and A. M. J. Koonen, "Advanced integration techniques on broadband millimetre-wave beam steering for 5G wireless networks and beyond," IEEE Journal of Quantum Electronics, vol. 52, no. 1, pp. 1–20, Jan.2016.
154. L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, C. Chae, and L. Hanzo, "Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results," IEEE Access, vol. 8, pp. 45 913–45 923, Mar. 2020.
155. S. Nie and I. F. Akyildiz, "Deep kernel learning-based channel estimation in ultra-massive MIMO communications at 0.06-10 THz," in Proc.IEEE GLOBECOM Workshops 2019, Dec. 2019, pp. 1–6.

 

ISBN: 978-93-91303-41-9

 

Volume: 2022

 

Edition: 1

 

Pages: 200

 

Price: INR 350/=

 

First Published: October, 2022

 

DOI:  https://doi.org/10.47715/JPC.978-93-91303-41-9

 

Download Sample Pages: Download sample pdf

 

How to cite this Book: 

APA:
Mohankumar.S, Shilpa Bhairanatti.,(2022). Reconfigurable Antenna Design for THz B and 6G Applications (1st ed., pp. 1-200). Jupiter Publications consortium,ISBN:978-93-91303-02-0, DOI: https://doi.org/10.47715/JPC.978-93-91303-41-9